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Abstract

Recent work has shown how information theory extends conventional full-rationality game

theory to allow bounded rational agents. The associated mathematical framework can be used to

solve constrained optimization problems. This is done by translating the problem into an iterated

game, where each agent controls a different variable of the problem, so that the joint probability

distribution across the agents’ moves gives an expected value of the objective function. The

dynamics of the agents is designed to minimize a Lagrangian function of that joint distribution.

Here we illustrate how the updating of the Lagrange parameters in the Lagrangian is a form of

automated annealing, which focuses the joint distribution more and more tightly about the joint

moves that optimize the objective function. We then investigate the use of “semicoordinate”

variable transformations. These separate the joint state of the agents from the variables of the

optimization problem, with the two connected by an onto mapping. We present experiments

illustrating the ability of such transformations to facilitate optimization. We focus on the special

kind of transformation in which the statistically independent states of the agents induces a

mixture distribution over the optimization variables. Computer experiment illustrate this for

k-sat constraint satisfaction problems and for unconstrained minimization of NK functions.

Subject Classification: programming: nonlinear, algorithms, theory; probability: applications

Area of Review: optimization
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1 Introduction

1.1 Distributed optimization and control with Probability Collectives

As first described in (Wolpert 2003a, Wolpert 2004a), it turns out that one can translate many of

the concepts from statistical physics, game theory, distributed optimization and distributed control

into one another. This translation is based on the fact that those concepts all involve distributed

systems in which the random variables are, at any single instant, statistically independent. (What

is coupled is instead the distributions of those variables.) Using this translation, one can transfer

theory and techniques between those fields, creating a large common mathematics that connects

them. This common mathematics is known as Probability Collectives (PC). Its unifying concern

is the set of probability distributions that govern any particular distributed system, and how to

manipulate those distributions to optimize one or more objective functions. See (Wolpert, Tumer

& Bandari 2003, Wolpert & Tumer 2001) for earlier, less formal work on this topic.

In this paper we consider the use of PC to solve constrained optimization and/or control prob-

lems. Reflecting the focus of PC on distributed systems, its use for such problems is particularly

appropriate when the variables in the collective are spread across many physically separated agents

with limited inter-agent communication (e.g., in a distributed design or supply chain application,

or distributed control). A general advantage of PC for such problems is that since they work with

probabilities rather than the underlying variables, they can be implemented for arbitrary types of

the underlying variables. This same characteristic also means they provides multiple solutions, each

of which is robust, along with sensitivity information concerning those solutions. An advantage

particulary relevant to optimization is that the distributed PC algorithm can often be implemented

on a parallel computer. An advantage particularly relevant to control problems is that PC algo-

rithms can, if desired, be used without any modelling assumptions about the (stochastic) system

being controlled. These advantages are discussed in more detail below.

1.2 The Probability Collectives Approach

Broadly speaking, the PC approach to optimization/control is as follows. First one maps the

provided problem into a multi-agent collective. In the simplest version of this process one assigns

a separate agent of the collective to determine the value of each of the variables xi ∈ Xi in the
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problem that we control. So for example if the i’th variable can only take on a finite number

of values, those |Xi| possible values constitute the possible moves of the i’th agent.1 The value

of the joint set of n variables (agents) describing the system is then x = [x1, · · · , xn] ∈ X with

X , X1 × · · · × Xn.2

Unlike many optimization methods, in PC the variables are not manipulated directly. Rather a

probability distribution is what is manipulated. To avoid combinatorial explosions as the number

of dimensions of X grows, we must restrict attention to a low-dimensional subset of the space of

all probability distributions. We indicate this by writing our distributions as q ∈ Q over X . The

manipulation of that q proceeds through an iterative process. The ultimate goal of this process is

to induce a distribution that is highly peaked about the x optimizing the objective function G(x),

sometimes called the world cost or world utility function. (In this paper we only consider problems

with a single overall objective function, and we arbitrarily choose lower values to be better, even

when using the term “utility”.)

In the precise algorithms investigated here, at the start of any iteration a single Lagrangian

function of q, L : Q → R, is specified, based on G(x) and the associated constraints of the

optimization problem. Rather than minimize the objective function over the space X , the algorithm

minimizes that Lagrangian over q ∈ Q. This is done by direct manipulation of the components of

q by the agents.

After such a minimization of a Lagrangian, one modifies the Lagrangian slightly. This is done

so that the q optimizing the new Lagrangian is more tightly concentrated about x that solve our

optimization problem than is the current q. One then uses the current q as the starting point for

another process of having the agents minimize a Lagrangian, this time having them work on that

new Lagrangian.

At the end of a sequence of such iterations one ends up with a final q. That q is then used to

determine a final answer in X , e.g., by sampling q, evaluating its mode, evaluating its mean (if that

is defined), etc. For a properly chosen sequence of Lagrangians and algorithm for minimizing the

Lagrangians, this last step should, with high probability, provide the desired optimal point in X .

For the class of Lagrangians used in this paper, the sequence of minimizations of Lagrangians is

closely related to simulated annealing. The difference is that in simulated annealing an inefficient

Metropolis sampling process is used to implicitly descend each iteration’s Lagrangian. By explicitly
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manipulating q, PC allows for more efficient descent.

In this paper we shall consider the case where Q is a product space, q(x) =
∏

i qi(xi). The

associated formulation of PC is sometimes called “Product Distribution” theory. It corresponds

to noncooperative game theory, with each qi being agent i’s “mixed strategy” (Wolpert 2004a,

Fudenberg & Tirole 1991). Our particular focus is the use of such product distributions when X

is not the same as the ultimate space of the optimization variables, Z. In this formulation — a

modification of what was presented above — there is an intermediate mapping from X → Z, and

the provided G is actually a function over Z, not (directly) over X . Such intermediate mappings are

called semicoordinate systems, and going from one to another is a semicoordinate transformation.

As elaborated below, such transformations allow arbitrary coupling among the variables in Z while

preserving many of the computational advantages of using product distributions over X .

1.3 Advantages of Probability Collectives

There are many advantages to working with distribution in Q rather than points in X . Usually

the support of q is all of X , i.e., the q minimizing the Lagrangian lies in the interior of the unit

simplices giving Q. Conversely, any element of X can be viewed as a probability distribution on the

edge (a vertex) of those simplices. So working with X is a special case of working with Q, where

one sticks to the vertices of Q. In this, optimizing over Q rather than X is analogous to interior

point methods. Due to the breadth of the support of q, minimizing over it can also be viewed as

a way to allow information from the value of the objective function at all x ∈ X to be exploited

simultaneously.

Another advantage, alluded to above, is that by working with distributions Q rather than

the space X , the same general PC approach can be used for essentially any X , be it continuous,

discrete, time-extended, mixtures of these, etc. (Formally, those different spaces just correspond

to different probability measures, as far as PC is concerned.) For expository simplicity though,

here we will work with finite X , and therefore have probability distributions rather than density

functions, sums rather than integrals, etc. See in particular (Bieniawski & Wolpert 2004a, Wolpert

& Bieniawski 2004a, Wolpert 2004b, Wolpert 2004c) for analysis explicitly for the case of infinite

X .

Yet another advantage arises from the fact that even when X is finite, q ∈ Q is a vector in
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a Euclidean space. Accordingly the Lagrangian we are minimizing is a real-valued function of a

Euclidean vector. This means PC allows us to leverage the power of descent schemes for continuous

spaces like gradient descent or Newton’s method — even if X is a categorical, finite space. So with

PC, schemes like “gradient descent for categorical variables” are perfectly well-defined.

While the Lagrangians can be based on prior knowledge or modelling assumptions concerning

the problem, they need not be. Nor does optimization of a Lagrangian require control of all variables

X (i.e., some of the variables can be noisy). This allows PC to be very broadly applicable.

1.4 Connection with other sciences

A more general advantage of PC is how it relates seemingly disparate disciplines to one another. In

particular, it can be motivated by using information theory to relate bounded rational game theory

to statistical physics (Wolpert 2003a, Wolpert 2004a). This allows techniques from one field to

be imported into the other field. For example, as illustrated below, the grand canonical ensemble

of physics can be imported into noncooperative game theory to analyze games having stochastic

numbers of the players of various types.

To review, a noncooperative game consists of a sequence of stages. At the beginning of each

stage every agent (aka “player”) sets a probability distribution (its “mixed strategy”) over its

moves (Fudenberg & Tirole 1991, Aumann & Hart 1992, Basar & Olsder 1999, Fudenberg & Levine

1998). The joint move at the stage is then formed by agents simultaneously sampling their mixed

strategies at that stage. So the moves those agents make at any particular stage of the game

are statistically independent and the distribution of the joint-moves at any stage is a product

distribution — just like in PD theory.

This does not mean that the moves of the agents across all time are statistically independent

however. At each stage of the game each agent will set its mixed strategy based on information

gleaned from preceding stages, information that in general will reflect the earlier moves of the other

agents. So the agents are coupled indirectly, across time, via the updating of the {qi}
n
i=1 at the end

of each stage.

Analogously, consider again the iterative PD algorithm outlined above, and in particular the

process of optimizing the Lagrangian within some particular single iteration. Typically that process

proceeds by successively modifying q across a sequence of timesteps. In each of those timesteps
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q(x) =
∏

i qi(xi) is first sampled, and then it is updated based on all previous samples. So just

like in a noncooperative game there is no direct coupling of the values of the underlying variables

{xi}at any particular timestep (q is a product distribution). Rather just like in a noncooperative

game, the variables are indirectly coupled, across time (i.e., across timesteps of the optimization),

via coupling of the distributions qi(xi) at different timesteps.

In addition, information theory can be used to show that the bounded rational equilibrium of any

noncooperative game is the q optimizing an associated “maxent Lagrangian” L(q) (Wolpert 2004a).

(That Lagrangian is minimized by the distribution that has maximal entropy while being consistent

with specified values of the average payoffs of the agents.) This Lagrangian turns out to be exactly

the one that arises in the version of PC considered in this paper. So bounded rational game theory

is an instance of PC.

Now in statistical physics often one wishes to find the distribution out of an allowed set of

distributions (e.g., Q) with minimal distance to a fixed target distribution p ∈ P, the space of all

possible distributions over X . Perhaps the most popular choice for a distance measure between

distributions is the Kullback-Leibler (KL) distance3: D(q‖p) ,
∑

x
q(x) ln

(

q(x)/p(x)
)

(Cover &

Thomas 1991). As the KL distance is not symmetric in its arguments p and q we shall refer to

D(q‖p) as the qp KL distance (this is also sometimes called the exclusive KL distance), and D(p‖q)

as the pq distance (also sometimes called the inclusive KL distance).

Typically in physics p is given by one of the statistical “ensembles”. An important exam-

ple of such KL minimization arises with the Boltzmann distribution of the canonical ensemble:

p(x) ∝ exp[−H(x)/T ], where H is the “Hamiltonian” of the system. The KL distance D(q||p)

to the Boltzmann distribution is proportional to the Gibbs free energy of statistical physics. This

free energy turns out to be identical to the maxent Lagrangian considered in this paper. Stated

differently, if one solves for the distribution q from one’s set that minimizes qp KL distance to the

Boltzmann distribution, one gets the distribution from one’s set having maximal entropy, subject

to the constraint of having a specified expected value of H. When the set of distributions one’s

considering is Q, the set of product distributions, this q minimizing qp KL distance to p is called

a “mean-field approximation” to p. So mean-field theory is an instance of PC.

This illustrates that bounded rational games and the mean-field approximation to Boltzmann

distributions are essentially identical. To relate them one equates H with a common payoff function

6



G. The equivalence is completed by then identifying each (independent) agent with a different one

of the (independent) physical variables in the argument of the Hamiltonian.4

This connection between these fields allows us to exploit techniques from statistical physics

in bounded rational game theory. For example, as mentioned above, rather than the canonical

ensemble, we can apply the grand canonical ensemble to bounded rational games. This allows us

to consider games in which the number of players of each type is stochastic (Wolpert 2004a).

1.5 The contribution of this paper

Use of a product distribution space Q for optimization/control is consistent with game theory (and

more generally multi-agent systems). This choice also results in a highly parallel algorithm, and is

well-suited to control problems that are inherently distributed. Nonetheless, other concerns may

dictate different Q. In particular, in many optimization tasks we seek multiple solutions far apart

from one another. For example, in Constraint Satisfaction Problems (CSPs) (Dechter 2003), the

goal is to identify all feasible solutions which satisfy a set of constraints, or to show that none exist.

Typically when there are multiple feasible solutions they are vary far from one another. For small

problem instances exhaustive enumeration techniques like branch-and-bound are typically used to

identify all such feasible solutions; we are interested in larger problems.

In cases like these, where we desire multiple far-apart solutions, use of PC with a product

distribution may be a poor choice. The problem is that if each distribution qi is peaked about

every value of xi which occurs in at least one of the multiple solutions, then in general there will

be spurious peaks in the product q(x) =
∏

qi(xi), i.e., q(x) may be peaked about some x that are

not solutions. On the other hand the alternative scenario, where each qi is only peaked about a

few of the solutions, does not provide us the desired many solutions. To address this we might

descend the Lagrangian many times, beginning from different starting points (i.e., different initial

q). However there is no guarantee that multiple runs will each generate different solutions.

PC offers a simple solution to this problem that allows one to still use product distributions:

extend the event space underlying our product distributions so that a single game provides mul-

tiple distinct solutions to our optimization problem at once. Formally, this is a semicoordinate

transformation. Intuitively speaking, the transformation considered here recasts the problem in

terms of a “meta-game” by cloning the original game into several simultaneous games, with an
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independent set of agents for each game. We also have a supervisor agent who chooses what game

is to be played. We then form a Lagrangian for the meta-game that is biased towards having any

agents that control the same variable in different games have different mixed strategies from one

another. The joint strategies for each of the separate games in the meta-game then give us our set

of multiple solutions to the original game. The supervisor agent sets the probability distribution of

which such solution is used. Since in general the resultant distribution across the variables being

optimized (i.e., across Z) cannot be written as a single product distribution, it provides coupling

among those variables.

More precisely, recall that the space of arguments to our objective function is Z, and our

product distributions are instead over X , with the “semicoordinate system” being the map from

this space to Z (Wolpert & Bieniawski 2004a, Wolpert 2004d). Before transformation of the

semicoordinate system, X = Z, and product distributions over X cannot give coupled distributions

over Z. However we will change X from Z and change the semicoordinate system in an associated

way. We then consider product distributions over the new X (i.e., the noncooperative game is

played in X , not Z). By appropriate choice of the semicoordinate transformation, such distributions

corresponds to coupled distributions across Z. In general any Bayes net topology can be achieved

with an appropriate semicoordinate transformation (Wolpert 2004d, Wolpert & Bieniawski 2004a).

Different product distributions over Z correspond to different Bayes nets having that same topology.

Here we consider a X that results in a mixture of M product distributions Z, (Macready &

Wolpert 2004b)

q(z) =
M
∑

m=1

q0(m)qm(z).

Intuitively, q0 is the distribution over the moves of the supervisor agent, with m being the game

that agent chooses. This allows for the determination of M solutions at once. At the same time,

due to the entropy term in the Lagrangian, it “pushes” the separate products qm(z) in the mixture

apart. This biases the algorithm to trying to find separated solutions, as desired.

In Sec. 2 we review how one arrives at the Lagrangian considered in this paper, the maxent

Lagrangian. Then in Sec. 3 we review two elementary techniques introduced in (Wolpert &

Bieniawski 2004b, Wolpert 2003a, Wolpert 2004b) for updating a product distribution q to minimize

the associated Lagrangian. In the experiments reported below, all terms in those update rules can
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be calculated in closed form. This is not true in general though. In Sec. 4 we review a set of

Monte-Carlo techniques for addressing such general scenarios.

We review semicoordinate transformations in Sec. 5, with particular attention for how mixture

models may be seen as a product distributions over a different space. In Sec.6 we analyze the

minimization of the maxent Lagrangian associated with mixture-inducing semicoordinate transfor-

mations. In that section we also relate our maxent Lagrangian for mixture distributions to the

Jensen-Shannon distance over X . Experimental validation of these techniques is then presented

for the k-satisfiability CSP problem (section 7.1) and the NK (section 7.2) optimization problems.

These sections consider both situations where the semicoordinate transformation is fixed upfront

and those where it is found dynamically.

We end with a synopsis of some other techniques for updating a product distribution q to

minimize the associated Lagrangian. This synopsis serves as the basis for a discussion of the

relationship between PC and other techniques. The distinguishing feature of PC is that it does not

treat the variable x as the fundamental object to be optimized, but rather the distribution across

it, q. Furthermore, samples of that distribution are only used if necessary to estimate quantities

that cannot be evaluated other ways. The fundamental objective function is stated in terms of q.

It should be emphasized that like all of PC, the techniques presented in this paper can readily be

applied to many problems other than constrained optimization. For example, PC provides a natural

improvement to the Metropolis sampling algorithm (Wolpert & Lee 2004), which the techniques

of this paper should be able to improve further. See (Antoine, Bieniawski, Kroo & Wolpert 2004,

Wolpert & Bieniawski 2004a, Bieniawski, Wolpert & Kroo 2004, Bieniawski & Wolpert 2004b) for

other examples and experiments.

2 The Lagrangian for Product Distributions

We begin by considering the case of the identity semicoordinate system, X = Z. As discussed above,

we consider qp distance to the T -parameterized Boltzmann distribution p(x) = exp[−G(x)/T ]/Z(T )

where Z(T ) is a normalization constant. At low T the Boltzmann distribution is concentrated on

x having low G values, so that the product distribution with minimal qp distance to it would be

expected to have the same behavior. Accordingly, one would expect that by taking qp KL distance

9



to this distribution as one’s Lagrangian, and modifying the Lagrangian from one iteration to the

next by lowering T , one should end up at a q concentrated on x having low G values. (See (Wolpert

& Bieniawski 2004b, Wolpert 2004b, Wolpert 2004c) for a more detailed formal justification of using

this Lagrangian based on solving constrained optimization problems with Lagrange parameters.)

More precisely, the qp KL distance to the Boltzmann distribution is the maxent Lagrangian,

L(q) = Eq(G) − TS(q) (1)

up to irrelevant additive and multiplicative constants. Equivalently, we can write it as

L(q) = βEq(G) − S(q) (2)

where β , 1/T , up to an irrelevant overall constant. In these equations the inner product Eq(G) ,

∑

x
q(x)G(x) is the expected value of G under q, and S(q) , −

∑

x
q(x) ln q(x) is the Shannon

entropy of q.

For q’s which are product distributions S(q) =
∑

i S(qi) where S(qi) = −
∑

xi
qi(xi) ln qi(xi).

Accordingly, we can view the maxent Lagrangian as equivalent to a set of Lagrangians, Li(q) =

∑

xi
Eq−i

[G(xi,x−i)]qi(xi)−TSi(qi), one such Lagrangian for each agent i so that L(q) =
∑n

i=1 Li(q).
5

The first term in L is minimized by having perfectly rational players, i.e. by players who concen-

trate all their probability on the moves that are best for them, given the distributions over the

agents. The second term is minimized by perfectly irrational players, i.e., by a perfectly uniform

joint mixed strategy q. So T specifies the balance between the rational and irrational behavior of

the players. In particular, for T → 0, by minimizing the Lagrangian we recover the Nash equilibria

of the game. Alternatively, from a statistical physics perspective, where T is the temperature of

the system, this maxent Lagrangian is simply the Gibbs free energy for the Hamiltonian G.

Since we are interested in problems with constraints, we replace G in Eqs. (1) and (2) with

G(x) +
C
∑

a=1

λaca(x) (3)

where G is the original objective function and the ca are the set of C equality constraint functions

that are required to be equal to zero. The λa are the Lagrange multipliers that are used to enforce
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the constraints. Collectively, we refer to the Lagrange multipliers with the C-vector λλλ.

In CSP’s we take the original objective function to be the constant function 0. In addition,

the constraints are all equality constraints, so a saddle point of the Lagrangian over the space of

possible q and λλλ is a solution of our problem. Note though that we don’t have to find the exact

saddle point; in general sampling from a q close to the saddle point will give us the x’s we seek.

An alternative approach to incorporating constraints would start by weakening them so that

they can be violated. We would then iteratively anneal down those weaknesses, i.e., strengthen the

constraints, to where they are not violated. In this approach we replace the maxent Lagrangian

formulation encapsulated in Eq.’s (2) and (3) with

L(q, β,λλλ) = β[Eq(G) − γG] +
∑

a

λa[Eq(ca) − γa] − S(q). (4)

In each iteration of the algorithm β, λλλ are treated as Lagrange parameters and one solves for their

values that enforce the equality constraints Eq(G) = γG, and the C constraints Eq(ca) = γa while

also minimizing L(q, β,λλλ). In the usual way, since our constraints are all equalities, one can do

this by finding saddle points of L(q, β,λλλ). The next iteration would then start by modifying our

Lagrangian by shrinking the values γG, {γa} slightly before proceeding to a new process of finding

a saddle point.

For pedagogical simplicity, here we do not consider this alternative approach, but concentrate

on the Lagrangian of Eq. (1) with the G of Eq. (3). Note that the vectors {qi} must be probability

distributions. So there are implicit constraints our solution must satisfy: 0 ≤ qi(xi) ≤ 1 for all i

and xi, and
∑

xi
qi(xi) = 1 for all i. To reduce the size of our equations we do not explicitly write

those constraints.

3 Minimizing the maxent Lagrangian

For fixed β, our task is to find a saddle point of L(q,λλλ). In “first order methods” such a saddle

point is found by iterating a two-step process. In the first step the Lagrange parameters λλλ are

fixed and one solves for the q that minimizes the associated L.6 In the second step one then freezes

that q and updates the Lagrange parameters. There are more sophisticated ways of finding saddle
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points (Grantham 2004), and more generally one can use modified versions of the Lagrangian (e.g.,

an augmented Lagrangian (Bertsekas 1996)). Here for pedagogical simplicity we do not consider

such more sophisticated approaches.

In this section we review two approaches to finding the {qi} for fixed Lagrange multipliers λλλ.

We also describe our approach for the second step of the first order method, i.e., we describe how we

use gradient ascent to update the Lagrange multipliers λa for fixed q. See (Wolpert 2003a, Wolpert

& Bieniawski 2004b, Wolpert 2004b) for further discussion of these approaches as well as the many

others one can use.

3.1 Brouwer Updating

At each step t the direction in the simplex Q that, to first order, maximizes the drop in L is given

by (-1 times)

∇̃qL(q) , ∇qL(q) − η(q). (5)

In this equation the qi(xi) component of the gradient (one for every agent i and every possible

move xi by the agent) is

[∇qL(q)]qi(xi) =
∂L

∂qi(xi)
= Eq−i

(G|xi) + T ln[qi(xi)] (6)

where

Eq−i
(G|xi) =

∑

x−i

q−i(x−i)G(xi,x−i)

with x−i , [x1, · · · , xi−1, xi+1, · · · , xn] and q−i(x−i) ,
∏n

j=1|j 6=i qj(xj). η(q) is the vector that

needs to be added to ∇qL(q) to get it back into Q.7 The qi(xi) component of η(q), is equal to

[η(q)]qi(xi) = ηi(q) ,
1

|Xi|

∑

x′
i

[∇qL(q)]qi(x′
i)

(7)

where |Xi| is the number of possible moves xi. Not that for any agent i, all of the associated

components of η(q), namely qi(x1), · · · , qi(x|Xi|), share the same value ηi(q). This choice ensures

that
∑

xi
qi(xi) = 1 after the gradient update to the values qi(xi).

The expression in Eq. (3.1) is the expected payoff to agent i when it plays move xi, under the

12



distribution q−i across the moves of all other agents. Setting ∇̃qL(q) to zero gives the solution

qt+1
i (xi) ∝ exp

[

−Eqt
−i

(G|xi)/T
]

(8)

Brouwer’s fixed point theorem guarantees the solution of Eq. (8) exists for any G (Wolpert 2004a,

Wolpert 2003a). Hence we call update rules based on this equation Brouwer updating .

Brouwer updating can be done in parallel on all the agents. One problem that can arise here

is “thrashing”. Each agent i is adopting the qi that would be optimal if all the other agents

didn’t change their distributions. However they do change their distributions, and thereby at least

partially confound agent i. One way to address this problem is to have agent i not use the current

value Eqt
−i

(G|xi) alone to update qt
i(xi), but rather use a weighted average of all values E

qt′
−i

(G|xi)

for t′ ≤ t, with the weights shrinking the further into the past one goes. This introduces an inertia

effect which helps to stabilize the updating. (Indeed, in the continuum-time limit, this weighting

becomes the replicator dynamics (Wolpert 2004d).)

A similar idea is to have agent i use the current Eqt
−i

(G|xi) alone, but have it only move part of

the way the parallel Brouwer update recommends. Whether one moves all the way or only part-way,

what agent i is interested in is what distribution will be optimal for the next distributions of the

other agents. Accordingly, it makes sense to have agent i predict, using standard time-series tools,

what those future distributions will be. This amounts to predicting what the next vector of values

of Eqt
−i

(G|xi) will be, based on seeing how that vector has evolved in the recent past. See (Shamma

& Arslan 2004) for related ideas.

Another way of circumventing thrashing is to have the agents update their distributions serially

(one after the other) rather than in parallel. See (Wolpert & Bieniawski 2004a) for a description of

various kinds of serial schemes, as well as a discussion of partial serial, partial parallel algorithms.

3.2 Nearest-Newton Updating

To evaluate the gradient one only needs to evaluate or estimate the terms Eqt
−i

(G|xi) for all agents

(see below and (Wolpert 2003a, Wolpert 2004a)). So gradient descent is typically straight-forward.

It is also usually simple to evaluate the Hessian of our Lagrangian. However conventional Newton’s

descent is often intractable for large systems, since that Hessian is so big that inverting often it
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isn’t feasible.

Of course there are schemes like conjugate gradient or quasi-Newton that can exploit second

order information even when the Hessian cannot be inverted. However the special structure of the

Lagrangian also allows second order information to be used for a simple variant of Newton descent.

The associated update rule is called Nearest-Newton updating (Wolpert & Bieniawski 2004b); we

review it here.

To derive Nearest-Newton we begin by considering the Lagrangian Eπ(G) − TS(π), for an

unrestricted probability distribution π.8 This Lagrangian is a convex function of π with a diagonal

Hessian. So given a current distribution πt we can make an unrestricted Newton step of this

Lagrangian to a new distribution πt+1. That new distribution typically is not in Q, even if the

starting distribution is. However we can solve for the qt+1 ∈ Q that is nearest to πt+1, for example

by finding the qt+1 ∈ Q that minimizes qp KL distance D(p||q) to that new point.

More precisely, the Hessian of Eπ(G) − TS(π), ∂2L/∂π(x)∂π(x′), is diagonal, and so is simply

inverted. This gives the Newton update for πt:

πt+1(x) = πt(x) − αt
qπ

t(x)

[

G(x) − Eπt(G)

T
+ S(πt) + lnπt(x)

]

which is normalized if πt is normalized and where αt
q is a step size. As πt will typically not belong

to Q we find the product distribution nearest to πt+1 by minimizing the KL distance D(πt+1‖q)

with respect to q. The result is that qi(xi) = πt+1
i (xi), i.e. qi is the marginal of πt+1 given by

integrating it over x−i.

Thus, whenever πt itself is a product distribution, the update rule for qi(xi) is

qt+1
i (xi) = qt

i(xi) − αt
qq

t
i(xi)

[

Eqt
−i

(G|xi) − Eqt(G)

T
+ S(qi) + ln qt

i(xi)

]

. (9)

This update maintains the normalization of qi, but may make one or more qt+1
i (xi) greater than

1 or less than 0. In such cases we set qt+1
i to be valid product distribution nearest in Euclidean

distance (rather than KL distance) to the suggested Newton update.
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3.3 Updating Lagrange Multipliers

In order to satisfy the imposed optimization constraints {ca(x)} we must also update the Lagrange

multipliers. To minimize communication between agents this is done in the simplest possible way

– by gradient descent. Taking the partial derivatives with respect to λa gives the update rule

λt+1
a = λt

a + αt
λEqt

∗

(

ca(x)
)

(10)

where αt
λ is a step size and qt

∗ is the local minimizer of L determined as above at the old settings,

λλλt, of the multipliers.

3.4 Other descent schemes

It should be emphasized that PC encompasses many approaches to optimization of the Lagrangian

that differ from those used here. For example, in (Bieniawski & Wolpert 2004a, Wolpert 2004d)

there is discussion of alternative types of descent algorithms that are related to block relaxation,

as well as to the fictitious play algorithm of game theory (Fudenberg & Tirole 1991, Shamma &

Arslan 2004) and multi-agent reinforcement learning algorithms like those in collective intelligence

(Wolpert & Tumer 2001, Wolpert et al. 2003).

As another example, see (Wolpert & Bieniawski 2004b, Wolpert 2004a) for discussions of using

pq KL distance (i.e., D(p||q)) rather than qp distance. Interestingly, as discussed below, that alter-

native distance must be used even for descent of qp distance, if one wishes to use 2nd order descent

schemes. (Wolpert 2004b, Wolpert 2004c) discusses using non-Boltzmann target distributions p,

and many other options for what functional(s) to descend.

4 Statistical estimation to update q

Using either of the update rules Eqs. (8) or (9) requires knowing Eqt
−i

(G|xi), defined in Eq. (3.1).

However, often we cannot efficiently calculate all the terms Eqt
−i

(G|xi). To use our update rules in

such situations we can use Monte Carlo sampling, as described in this section.
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4.1 Monte Carlo sampling

In the Monte Carlo approach, at each timestep every agent i samples its distribution qi to get a

point xi. Since we have a product distribution q, these samples provides us with a sample x of the

full joint distribution q. By repeating this process L times we get a “block” of such joint samples.

The G values in that block can be used by each agent separately to estimate its updating values

Eqt
−i

(G|xi), for example simply by uniform averaging of the G values in the samples associated with

each xi. Note that the single set of samples can be used no matter how many agents are in the

system; we don’t need a different Monte Carlo process for each agent to estimate their separate

Eqt
−i

(G|xi).

All agents (variables) sample moves (variable settings) independently, and coupling occurs only

in the updates of the qi. As we have seen this update (even to second order) for agent i depends

only on the conditional expectations Eq−i
(G|xi) where q−i describes the strategies used by the

other agents. Thus, if we are using Monte Carlo, then the only information which needs to be

communicated to each agent is the G values upon which the estimate will be based. Using these

values each agent independently updates its strategy (its qi) in a way which collectively is guaranteed

to lower the Lagrangian.

If the expectation is evaluated analytically, the ith agent needs the qj distributions for each of

the j agents involved in factors in G that also involve i. For objective functions which consists of

a sum of local interactions each of which individually involves only a small subset of the variables

(e.g. the problems considered here), the number of agents that i needs to communicate with may

be much smaller than n.

4.2 Difference utilities for faster Monte Carlo convergence

The basic Monte Carlo approach outlined above can be slow to converge in high-dimensional prob-

lems. For the problems considered in this paper this is irrelevant, since Eqt
−i

(G|xi) may be efficiently

calculated in closed form for all agents i and their moves xi, so we don’t need to use Monte Carlo

sampling. For completeness though here we review a variant of the basic Monte Carlo approach

that converges far more quickly. See (Wolpert 2003a, Wolpert & Bieniawski 2004b) for details.

Say we are at a timestep t at the end of a Monte Carlo block, and consider the simplest updating
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rule. This is gradient descent updating, in which we wish to update qi at a timestep t by having

each agent i take a small step in the direction (cf. Eq. (5))

f i,G , −

[

∂L(qt)

∂qi(x1
i )

, · · · ,
∂L(qt)

∂qi(x
|Xi|
i )

]

− ηi(q)1

where ηi(q) was defined in Eq. (7), 1 is the vector of length |Xi| all of whose components are 1,

and x1
i , · · · , x

|Xi|
i are the |Xi| moves available to agent i. In general, there will be some error in

i’s estimate of that step, since it has limited information about qt
−i. Presuming quadratic loss

reflects quality of the update, for agent i the Bayes-optimal estimate of its update is the posterior

expectation
∫

dqt P (qt
−i | ni) f

i,G

where ni is all the prior knowledge and data that i has, and the dependence of f i,G on qt
−i is

implicit.9 P (qt
−i|ni) is a probability distribution over likely values of qt

−i given the information ni

available to agent i.

Now agent i can evaluate ln qi(xi) for each of its moves xi exactly. However to perform its

update it still needs the integrals

∫

dqt P (qt
−i|ni) Eqt

−i
(G|xi)

(recall Eq. (6)). In general these integrals can be very difficult to evaluate. As an alternative, we

can replace those integrals with simple maximum likelihood estimators of them, i.e., we can use

Monte Carlo sampling. In this case, the prior information, ni, available to the agent is a list, L, of

L joint configurations x along with their accompanying objective values G(x).

To define this precisely, for any function h(x), let ĥ(ni) be a vector of length |Xi| which is

indexed by xi. The xi component of ĥ(ni) is indicated as ĥxi
(ni). Each of its components is given

by the information in ni. The xi’th such component is the empirical average of the values that h

had in the Lxi
samples from the just-completed Monte Carlo block when agent i made move xi,

i.e.

ĥxi
(ni) =

1

Lxi

∑

x∈Lxi

h(x)
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where Lxi
is the set of x in L whose ith component is equal to xi, and where Lxi

= |Lxi
|. Given

this notation, we can express the components of the gradient update step for agent i under the

simple maximum likelihood estimator as the values

f̂ i,G
xi

(ni) = −{Ĝxi
(ni) + T ln qi(xi)} − η̂(ni) (11)

where

η̂i(ni) ,
−1

|Xi|

∑

x′
i

{

Ĝx′
i
(ni) + T ln qi(x

′
i)
}

. (12)

Unfortunately, often in very large systems the convergence of Ĝ(ni) with growing L is very

slow, since the distribution sampled by the Monte Carlo process to produce ni is very broad. This

suggests we use some alternative estimator. Here we focus on estimators that are still maximum

likelihood, just with a different choice of utility. To that end, first posit that the differences

Eqt
−i

(G|xi) − Eqt
−i

(G|x′
i), one for each (xi, x

′
i) pair, are unchanged when one replaces G with some

other function gi. So the change is equivalent to adding a constant to G, as far as those differences

are concerned. This means that if agent i used qt
−i to evaluate its expectation values exactly, then

its associated update would be unchanged under this replacement. (This is due to cancellation

of the equivalent additive constant with the change that arises in ηi(ni) under the replacement of

G(x) with gi(x)). It is straight-forward to verify that the set of all gi guaranteed to have this

character, regardless of the form of q, is the set of difference utilities, gi(x) = G(x) − Di(x−i) for

some function Di. G itself is the trivial case Di(x−i) = 0 ∀xi.

On the other hand, if we use a difference utility rather than G in our maximum likelihood

estimator then it is the sample values of P (gi) that generate ni, and we use the associated xi-

indexed vector ĝi
xi

(ni) rather than Ĝxi
(ni) to update each qi. For well-chosen Di it may typically

be the case that ĝi(ni) has a far smaller standard deviation than does Ĝ(ni). In particular, if

the number of coordinates coupled to i through G does not grow as the system does, often such

difference utility error bars will not grow much with system size, whereas the error bars associated

with G will grow greatly. Another advantage of difference utilities is that very often the Monte

Carlo values of a difference utility are far easier to evaluate than are those of G, due to cancellation

in subtracting Di.
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To make this more precise we can solve for the difference utility with minimal error bar. First

as a notational matter, extend the definition of f i,G by replacing G with (arbitrary) h throughout,

writing that extended version as f i,h. Then assuming no Lxi
= 0, we are interested in the gi

minimizing the data-averaged quadratic error,

E
q−i,n

gi

i

(Err) =

∫

dq−i P (q−i)

∫

dngi

i P (ngi

i |nx
i , q−i, g

i)‖f i,gi

− f̂ i,gi

(ni)‖
2, (13)

where P (q−i) reflects any prior information we might have concerning q−i (e.g., that it is likely that

the current f i,gi
is close to that estimated for the previous block of L steps), and ngi

i is the set of

values of the private utility contained in ni. (The associated xi values, nx
i , are independent of gi

and q−i and therefore for our purposes can be treated as though they are fixed.)

Now the components of f̂ i,gi
(ni) (one for each xi) are not independent in general, being coupled

via η̂i(ni). To get an integrand that involves only independent variables, we must work with only

one xi component at a time. To that end, rewrite the data-averaged quadratic error as

∑

xi

∫

dq−i P (q−i)

∫

dngi

i P (ngi

i |nx
i , q−i, g

i)[f i,gi

xi
− f̂ i,gi

xi
(ni)]

2

where f i,gi

xi is the qi(xi) component of f i,gi
. Our results will hold for all q−i, so we ignore the outer

integral and focus on
∑

xi

∫

dngi

i P (ngi

i |nx
i , q−i, g

i)[f i,gi

xi
− f̂ i,gi

xi
(ni)]

2. (14)

For any xi the inner integral can be decomposed with the famous bias-variance decomposition into

a sum of two terms (Duda, Hart & Stork 2000).10 The first of the two terms in our sum is the

(square of the) bias, f i,gi

xi − E
n

gi

i

(f̂ i,gi

xi ), where

E
n

gi

i

(

f̂ i,gi

xi
(ngi

i )
)

,

∫

dngi

i P (ngi

i |nx
i , q−i, g

i)f̂ i,gi

xi
(ni) (15)

is the expectation (over all possible sets of Monte Carlo sample utility values ng
i ) of f̂ i,gi

xi (ni). The

bias reflects the systematic trend of our sample-based estimate of f i,gi

xi to differ from the actual

f i,gi

xi . When bias is zero, we know that on average our estimator will return the actual value it’s

estimating.
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The second term in our sum is the variance,

Var
(

f̂ i,gi

xi
(ngi

i )
)

,

∫

dngi

i P (ngi

i |nx
i , q−i, g

i)
{

f̂ i,gi

xi
(ni) − E

n
gi

i

(f̂ i,gi

xi
)
}2

, (16)

In general variance reflects how much the value of our estimate “bounces around” if one were to

resample our Monte Carlo block. In our context, it reflects how much the private utility of agent

i depends on its own move xi versus the moves of the other agents. When i’s estimator is isolated

from the moves of the other agents f̂ i,gi

xi (ni) is mostly independent of the moves of the other agents,

and therefore of ni. This means that variance is low, and there is a crisp “signal-to-noise” guiding

i’s updates. In this situation the agent can achieve a preset accuracy level in its updating with a

minimal total number of samples in the Monte Carlo block.

Plug the general form for a difference utility into the formula for f̂ i,gi

xi (ni) to see that (due to

cancellation with the η̂(ni) term) its ngi

i -averaged value is independent of Di. Accordingly bias must

equal 0 for difference utilities. (In fact, difference utilities are the only utility that is guaranteed to

have zero bias for all q−i.) So our expected error reduces to the sum over all xi of the variance for

each xi.

For each one of those variances again use Eq. 11 with G replaced by gi throughout to expand

f̂ i,gi

xi (ni). Since the qi(xi) terms in that expansion are all the same constant independent of ni, they

don’t contribute to the variance. Accordingly we have

Var
(

f̂ i,gi

xi
(ngi

i )
)

= Var

(

ĝi
xi

(ng
i ) −

1

|Xi|

∑

x′
i

ĝi
x′

i
(ng

i )

)

= Var

([

1 −
1

|Xi|

]

ĝi
xi

(ng
i ) −

1

|Xi|

∑

x′
i 6=xi

ĝi
x′

i
(ng

i )

)

. (17)

Since nx
i is fixed and we are doing IID sampling, the two expressions inside the variance function

are statistically independent. In addition, the variance of a difference of independent variables is
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the sum of the variances. Accordingly, the sum over all xi of our variances is (cf. Eq. (14))

∑

xi

Var
(

f̂ i,gi

xi
(ng

i )
)

=
∑

xi

Var

([

1 −
1

|Xi|

]

ĝi
xi

(ng
i ) −

1

|Xi|

∑

x′
i 6=xi

ĝi
x′

i
(ng

i )

)

=
∑

xi

{[

1 −
1

|Xi|

]2

Var
(

ĝi
xi

(ng
i )
)

+
1

|Xi|2

∑

x′
i 6=xi

Var
(

ĝi
x′

i
(ng

i )
)

}

=
∑

xi

{[

1 −
1

|Xi|

]2

+
|Xi| − 1

|Xi|2

}

Var(ĝi
xi

(ng
i ))

=
|Xi| − 1

|Xi|

∑

xi

Var(ĝi
xi

(ng
i )), (18)

where the third equation follows from the second by using the trivial identity
∑

a

∑

b 6=a F (b) =

∑

a F (a)
∑

b 6=a 1 for any function F .

Since for each such xi we are doing Lxi
-fold IID sampling of an associated fixed distribution,

the variance for each separate xi is of the form

∫

dy P (y)

[

1

Lxi

Lxi
∑

j=1

yj − EP

(

1

Lxi

Lxi
∑

j=1

yj

)]2

for a fixed distribution P (y1, y2, . . . , yLxi
) =

∏Lxi

j=1 P (yj). We can again use the decomposition of a

variance of a sum into a sum of variances to evaluate this. With the distribution qt implicit, define

the single sample variance for the value of any function H(x), for move xi, as

Var(H(xi)) , E([H]2|xi) − [E(H|xi)]
2. (19)

This gives

Var(ĝi
xi

(ng
i )) = Var(gi(xi)) / Lxi

(20)

Collecting terms, we get

∑

xi

Var(f̂ i,gi

xi
(ng

i )) =
|Xi| − 1

|Xi|

∑

xi

Var(gi(xi))

Lxi

. (21)

Now Var(A(τ)) = (1/2)
∑

t1,t2
P (t1)P (t2)[A(t1) − A(t2)]

2 for any random variable τ with dis-
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tribution P (t). Use this to rewrite the sum in Eq. (21) as

|Xi| − 1

2|Xi|

∑

xi

L−1
xi

∑

x
′
−i

,x′′
−i

q−i(x
′
−i)q−i(x

′′
−i)[g

i(xi,x
′
−i) − gi(xi,x

′′
−i)]

2

Bring the sum over xi inside the other integrals, expand gi, and drop the overall multiplicative

constant to get

Var(F̂ i
gi(n

g
i )) ∝

∑

x
′
−i

,x′′
−i

q−i(x
′
−i)q−i(x

′′
−i)

∑

xi

[

G(xi,x
′
−i) − G(xi,x

′′
−i) − {Di(x′

−i) − Di(x′′
−i)}

]2

Lxi

.

For each x′
−i and x′′

−i, our choice of Di minimizes the sum so long as the difference in the curly

brackets obeys

Di(x′
−i) − Di(x′′

−i) =
∑

xi

[G(xi,x
′
−i) − G(xi,x

′′
−i)]

Lxi

/
∑

x′
i

1

Lx′
i

.

This can be assured by picking

Di(x−i) =

[

∑

x′
i

1

Lx′
i

]−1
∑

x′
i

G(x′
i,x−i)

Lx′
i

. (22)

for all x−i. The associated difference utility, gi(x) = G(x)−Di(x−i), is called the Aristocrat utility

(AU). An approximation to it was investigated in (Wolpert & Tumer 2001, Wolpert, Tumer &

Bandari 2002, Wolpert & Tumer 2002) and references therein. AU itself was derived in (Wolpert

2003b).

Note that AU minimizes variance of gradient descent updating regardless of the form of q.

Indeed, being independent of q−i
, it minimizes our original q−i

integral in Eq. (13), regardless of

the prior P (q−i
). For the same reason it is optimal if the integral is replaced by a worst-case bound

over q−i
.

Sometimes not all the terms in the sum in AU can be stored, because |Xi| and/or the block size

is too large. In such a case nx
i must be averaged over as well as ng

i . That sum can be approximated
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by replacing the Lxi
values in the definition of AU with q(xi)L. This replacement also provides a

way to address cases where one or more Lxi
= 0.11 Similarly, for computational reasons it may be

desirable to approximate the weighted average of G over all x′
i which defines AU.

The sum over x′
i occurring in AU should not be confused with the sum over x′

i that pulls our

gradient estimate back into the unit simplex. The sum here is over values of G for counterfactuals

sample pairs (x′
i,x−i). (The other sum is over values of our gradient estimate at all of its arguments.)

When the functional form of G is known it is often the case that there is cancellation which allows

AU be calculated directly, in one evaluation, an evaluation which can be cheaper than that of G(x).

When this is not the case their evaluation incurs a computational cost in general.12 This cost is

offset by the fact that those evaluations allow us to determine the value of AU not just for the

actual point (xi,x−i), but in fact for all points {(x′
i,x−i)|x

′
i ∈ Xi}.

Nonetheless, there will be cases where evaluating AU requires evaluating all possible G(x′
i,x−i),

and where the cost of that is prohibitive, even if it allows us to update AU for all xi at once.

Fortunately there are difference utilities that are cheaper to evaluate than AU while still having

less variance than G. In particular, note that the weighting factor L−1
x′

i
/
∑

x′′
i
L−1

x′′
i

in the formula for

AU is largest for those xi which occur infrequently, i.e. that have low qi(xi). This observation leads

to the Wonderful Life Utility (WLU), which is an approximation to AU that (being a difference

utility) also has zero bias:

gWLU
i (xi,x−i) = G(xi,x−i)) − G(xclamp

i ,x−i). (23)

In this formula, xclamp
i = arg minxi

Lxi
or if we wish to be more conservative, arg minxi

qi(xi),

agent i’s lowest probability move (Wolpert 2003a, Wolpert 2004a).13

4.3 Discussion of Monte Carlo sampling

Note that the foregoing analysis breaks down if any of the Lxi
= 0. More generally it may break

down if just one or more of the q(xi) are particularly small in comparison to the others, even if no Lxi

is exactly zero. The reason for this is that our approximation of the average over nx
i with the average

where no Lxi
= 0 breaks down. Doing the exact calculation with no such approximation doesn’t

fix the situation — once we have to assign non-infinitesimal probability to Lxi
= 0, we’re allowing
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a situation in which the gradient step would take us off the simplex of allowed q ∈ Q. We might

try to compensate for this by reducing the stepsize, but in general the foregoing analysis doesn’t

hold if stepsize is reduced in some situations but not in any others. (Variable stepsize constitutes

a change to the update rule. Such a modification to the update rule must be incorporated into the

analysis — which obviates the derivation of AU.)

One way to address this scenario would be to simply zero out the probability of agent i making

any move xi for which qi(xi) is particular small. In other words, we can redefine i’s move space to

exclude any moves if their probability ever gets sufficiently small. This has the additional advantage

of reducing the amount of “noise” that agents j 6= i will see in the next Monte Carlo block, since

the effect of agent i on the value of G in that block is more tightly constrained.

There several ways to extend the derivation of AU, which only addresses estimation error for

a single agent at a time, and for just that agent’s current update. One such extension is to have

agent i’s utility set to improve the accuracy of the update estimation for agents j 6= i. For example,

we could try to bias qi to be peaked about only a few moves, thereby reducing the amount of noise

those other agents j 6= i will see in the next Monte Carlo block due to variability in i’s move choice.

Another extension is to have agent i’s utility set to improve the accuracy of its estimate of its

update for future Monte Carlo blocks, even at the expense of accuracy for the current block..

Strictly speaking, the derivation of AU only applies to gradient descent updating of q. Difference

utilities are unbiased estimators for the Nearest Newton update rule, so long as each i estimates

Eqt(gi) as qt
i(xi) times the estimate of Eqt(gi|xi),

∑

xi

ĝi
xi

(ni)q
t
i(xi)

rather than as the empirical average over all samples of gi,14

∑

xi

ĝi
xi

(ni)
Lxi

L
.

However the calculation for how to minimize the variance must be modified. Redoing the algebra
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above, the analog of AU for the Nearest Newton rule arises if we replace

1

Lxi

→
[qi(xi)]

2

Lxi

{

[1 − qi(xi)]
2 +

∑

x′
i 6=xi

[qi(x
′
i)]

2

}

(24)

throughout the equation defining AU. Similar considerations apply to Brouwer updating as well.

Nonetheless, in practice AU and WLU as defined above work well (and in particular far better than

taking gi = G) for the other updating rules as well.

For gradient descent updating, minimizing expected quadratic error of our estimator of Eqt
−i

(G|xi)

corresponds to making a quadratic approximation to the Lagrangian surface, and then minimizing

the expected value of the Lagrangian after the gradient step (Wolpert 2003a). More generally,

and especially for other update rules, some other kind of error measure might be preferable. Such

measures would differ from the bias-variance decomposition. We do not consider such alternatives

here.

Note that the agents are completely “blind” in the Monte Carlo process outline above, getting

no information from other agents other than the values of G(x). When we allow some information

to be transmitted between the agents we can improve the estimation of Eqt
−i

(G|xi) beyond that

of the simple Monte Carlo process outlined above. For example, say that at every timestep the

agent i knows not just its own move xi, but in fact the joint move x. Then as time goes on it

accumulates a training set of pairs {(x, G(x))}. These can be used with conventional supervised

learning algorithms (Duda et al. 2000) to form a rough estimate of the entire function G, Ĝ. Say

that in addition i knows not its own distribution qi(x
t
i), but in fact the entire joint distribution,

q(xt). Then it can use that joint distribution together with Ĝ to form an estimate of Eqt
−i

(G|xi).

That estimate is in addition to the one formed by the blind Monte Carlo process outlined above.

One can then combine these estimates to form one superior to both. See (Lee & Wolpert 2004).

Even when we are restricted to a blind Monte Carlo process, there are many heuristics that

when incorporated into the update rules that can greatly improve their performance on real-world

problems (Wolpert 2004c). In this paper we examine problems for which joint distributions q are

known to all agents as well as the function form of G(x) and the required expectations Eqt
−i

(G|xi)

may be obtained in closed form. So there is no need for Monte Carlo approximations. Accordingly

there is no need for those heuristics, and there is not even any need to using difference utilities.
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Empirical investigations of the effects of using difference utility functions and the heuristics may

be found in (Bieniawski & Wolpert 2004a, Bieniawski et al. 2004, Bieniawski & Wolpert 2004b).

5 Semicoordinate Transformations

5.1 Motivation

Consider a multi-stage game like chess, with the stages (i.e., the instants at which one of the players

makes a move) delineated by t. In game theoretic terms, the “strategy” of a player is the mapping

from board-configuration to response that specifies the rule it adopts before play starts (Fudenberg

& Tirole 1991, Basar & Olsder 1999, Osborne & Rubenstein 1994, Aumann & Hart 1992, Fudenberg

& Levine 1998). More generally, in a multi-stage game like chess the strategy of player i, xi, is the

set of t-indexed maps taking what that player has observed in the stages t′ < t into its move at

stage t. Formally, this set of maps is called player i’s normal form strategy.

The joint strategy of the two players in chess sets their joint move-sequence, though in gen-

eral the reverse need not be true. In addition, one can always find a joint strategy to result in

any particular joint move-sequence. Now typically at any stage there is overlap in what the play-

ers have observed over the preceding stages. This means that even if the players’ strategies are

statistically independent (being separately set before play started), their move sequences are statis-

tically coupled. In such a situation, by parameterizing the space Z of joint-move-sequences z with

joint-strategies x, we shift our focus from the coupled distribution P (z) to the decoupled product

distribution, q(x). This is the advantage of casting multi-stage games in terms of normal form

strategies.

More generally, given any two spaces X and Z, any associated onto mapping ζ : Z → X ,

not necessarily invertible, is called a semicoordinate system. The identity mapping Z → Z is

a trivial example of a semicoordinate system. Another semicoordinate system is the mapping

from joint-strategies in a multi-stage game to joint move-sequences. In other words, changing the

representation space of a multi-stage game from move-sequences z to strategies x is a semicoordinate

transformation of that game.

Intuitively, a semi-coordinate transformation is a reparameterization of how a game — a map-

ping from joint moves to associated payoffs — is represented. So we can perform a semicoordinate

26



transformation even in a single-stage game. Say we restrict attention to distributions over X that

are product distributions. Then changing ζ(·) from the identity map to some other function means

that the players’ moves are no longer independent. After the transformation their move choices

— the components of z — are statistically coupled, even though we are considering a product

distribution.

Formally, this is expressed via the standard rule for transforming probabilities,

PZ(z ∈ Z) , ζ(PX ) ,

∫

dx PX (x)δ(z − ζ(x)), (25)

where PX and PZ are the distributions across X and Z, respectively. To see what this rule means

geometrically, recall that P is the space of all distributions (product or otherwise) over Z and that

Q is the space of all product distributions over X . Let ζ(Q) be the image of Q in P. Then by

changing ζ(·), we change that image; different choices of ζ(·) will result in different manifolds ζ(Q).

As an example, say we have two players, with two possible moves each. So z consists of the

possible joint moves, labelled (0, 0), (0, 1), (1, 0) and (1, 1). Have X = Z, and choose ζ(0, 0) =

(0, 0), ζ(0, 1) = (1, 1), ζ(1, 0) = (1, 0), and ζ(1, 1) = (0, 1). Say that q is given by q1(x1 =

0) = q2(x2 = 0) = 2/3. Then the distribution over joint-moves z is PZ(0, 0) = PX (0, 0) = 4/9,

PZ(1, 0) = PZ(1, 1) = 2/9, PZ(0, 1) = 1/9. So PZ(z) 6= PZ(z1)PZ(z2); the moves of the players are

statistically coupled, even though their strategies xi are independent.

Any PZ , no matter what the coupling among its components, can be expressed as ζ(PX ) for

some product distribution PX for and associated ζ(·) In the worst case, one can simply choose X to

have a single component, with ζ(·) a bijection between that component and the vector z — trivially,

any distribution over such an X is a product distribution. Another simple example is where one

aggregates one or more agents into a new single agent, i.e., replaces the product distribution over

the joint moves of those agents with an arbitrary distribution over their joint moves. This is related

to the concept coalitions in cooperative game theory, as well as to Aumann’s correlated equilibrium

(Fudenberg & Tirole 1991, Aumann 1987, Aumann & Hart 1992).

Less trivially, given any model class of distributions {PZ}, there is an X and associated ζ(·) such

that {PZ} is identical to ζ(QX). Formally this is expressed in a result concerning Bayes nets. For

simplicity, restrict attention to finite Z. Order the components of Z from 1 to N . For each index
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i ∈ {1, 2, . . . , N}, have the parent function Pa(i, z) fix a subset of the components of z with index

greater than i, returning the value of those components for the z in its second argument if that

subset of components is non-empty. So for example, with N > 5, we could have Pa(1, z) = (z2, z5).

Another possibility is that Pa(1, z) is the empty set, independent of z.

Let A(Pa) be the set of all probability distributions PZ that obey the conditional dependencies

implied by Pa: ∀ PZ ∈ A(Pa), z ∈ Z,

PZ(z) =
N
∏

i=1

PZ(zi|P(i, z)). (26)

By definition, if Pa(i, z)) is empty, PZ(zi|Pa(i, z)) is just the i’th marginal of PZ , PZ(zi). As

an example of these definitions, the dependencies {Pa(1, z) = (z2, z3), Pa(2, z) = z4, Pa(3, z) =

(), Pa(4, z) = ()} correspond to the family of distributions factoring as

P (z) = P (z1|z2, z3)P (z2|z4)P (z3)P (z4)

As proven in (Wolpert & Bieniawski 2004a), for any choice of Pa there is an associated set of

distributions ζ(QX) that equals A(Pa) exactly:

Proposition: Define the components of X using multiple indices: For all i ∈ {1, 2, . . . , N} and

possible associated values (as one varies over z ∈ Z) of the vector Pa(i, z), there is a separate

component of x, xi;Pa(i,z). This component can take on any of the values that zi can. Define ζ(·)

recursively, starting at i = N and working to lower i, by the following rule: ∀ i ∈ {1, 2, . . . , N},

[ζ(x)]i = xi;Pa(i,z).

Then A(Pa) = ζ(QX).

Intuitively, each component of x in Prop. 1 is the conditional distribution PZ(zi|Pa(i, z))

for some particular instance of the vector Pa(i, z). As illustration consider again the example

{Pa(1, z) = (z2, z3), Pa(2, z) = z4, Pa(3, z) = (), Pa(4, z) = ()}. If each zi assumes the value 0 or

1, then x has 8 components x4, x3, x2;0, x2;1, x1;00, x1;01, x1;10, and x1;11 with each component also
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x1 = 0 (0,0,0), (0,0,1), (0,1,0), (0,1,1) z1 = 0 (1,0,0), (0,1,0), (0,0,1), (1,1,1)
x1 = 1 (1,0,0), (1,0,1), (1,1,0), (1,1,1) z1 = 1 (0,0,0), (1,1,0), (1,0,1), (0,1,1)

x2 = 0 (0,0,0), (0,0,1), (1,0,0), (1,0,1) z2 = 0 (1,0,0), (0,1,0), (1,0,1), (0,1,1)
x2 = 1 (0,1,0), (0,1,1), (1,1,0), (1,1,1) z2 = 1 (0,0,0), (1,1,0), (0,0,1), (1,1,1)

x3 = 0 (0,0,0), (0,1,0), (1,0,0), (1,1,0) z3 = 0 (1,0,0), (0,1,0), (1,0,1), (0,1,1)
x3 = 1 (0,0,1), (0,1,1), (1,0,1), (1,1,1) z3 = 1 (0,0,0), (1,1,0), (0,0,1), (1,1,1)

Table 1: Resultant partitions from the transformation of Figure 1(b).

either 0 or 1. The product distribution in X is

q(x) = q4(x4)q3(x3)q2;0(x2;0)q2;1(x2;1)q1;00(x1;00)q1;01(x1;01)q1;10(x1;10)q1;11(x1;11).

Under ζ the distribution q4(x4) is mapped to q4(z4), q2;0(x2;0) is mapped to q2(z2|z4 = 0), q1;01(x1;01)

is mapped to q1(z1|z2 = 0, z3 = 1), and so on.

Prop. 1 means that in principle we never need consider coupled distributions. It suffices to

restrict attention to product distributions, so long as we use an appropriate semicoordinate system.

As we shall see, mixture models over Z can be also be represented using products. However, before

discussing mixture models we show how transformation of semicoordinate systems can in principle

be used to escape local minima in L(q).

5.2 Semicoordinate transformations and local minima

To illustrate another application of semicoordinate transformations, we confine ourselves to the

case where X = Z so that ζ is a bijection on X .

We assume that the domain of the ith of n variables has size |Xi|. Then |X | =
∏n

i=1 |Xi| is the

size of the search space. Each coordinate variable xi partitions the search space into |Xi| disjoint

regions. The partitions are such that the intersection over all variable coordinates yields a single x.

In particular, the standard semicoordinate system relies on the partition [∗, · · · , ∗, xi = 0, ∗, · · · , ∗],

· · · , [∗, · · · , ∗, xi = |Xi| − 1, ∗, · · · , ∗] for each coordinate xi.

As a illustrative example, consider 3 binary variables where X = {0, 1}3. Figure 1(a) shows

the 8 points in the search space represented in the standard coordinate system. Figure 1(b) shows

a shuffling of the 8 configurations under the permutation (0 1 2 3 4 5 6 7)
ζ
→ (1 5 2 6 4 0 7 3). The

resulting partitions of configurations are given in Table 1.
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Figure 1: (a) Original linear indexing for 3 binary variables x1, x2, x3. (b) Result after applying
the transformation to the new variables z1, z2, z3.

Such transformations can be used to escape from local minima of the Lagrangian. To see this

consider a coordinate transformation ζ from X to the new space Z such that z = ζ(x), and choose

q(z) = q(x) (i.e. do not change the associated probabilities). Then the entropy contribution to the

Lagrangian remains unchanged, but the expected G alters from
∑

x
G(x)q(x) to15

∑

x

GX (x)q(x) ,
∑

x

G(ζ(x))q(x) =
∑

z

G(ζ
(

z)
)

q(z).

This means that the gradient of the maxent Lagrangian will typically differ before and after the ap-

plication of ζ. In particular, what was a local minimum with zero gradient before the semicoordinate

transformation may not be a local minimum after the transformation and the resultant shuffling

of utility values. As difficult problems typically have many local minima in their Lagrangian, such

semicoordinate transformations may prove very useful.

A simple example is shown in 2(a) where a Lagrangian surface for 2 binary variables is shown.

The utility values are G(0, 0) = 0, G(1, 0) = 25, G(0, 1) = 18, G(1, 1) = 2. If the temperature is 7 in

units of the objective then the global minimum is at q1(0) = 0.95, q2(0) = 0.91 where L = −0.82.

At this temperature there is a suboptimal local minimum (indicated by the dot in the lower left)

located at q∗1(0) = 0.14, q∗2(0) = 0.08 where L = 0.83.

There are a number of criteria that might be used to determine a semicoordinate transforma-

tion to escape from this local minimum q∗. Two simple choices are to select the transformation

that minimizes the new value of the maxent Lagrangian (i.e., minimize L(q∗)), or to select the

transformation which results in the largest gradient of the maxent Lagrangian at q∗, (i,e,, maxi-
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Figure 2: (a) Original Lagrangian function. The suboptimal local minimum is located at q∗ which
is indicated with a dot in the lower left corner. (b) The Lagrangian under the coordinate trans-
formation which minimizes L(q∗). (c) The Lagrangian under the coordinate transformation which
maximizes the norm of the gradient at q∗. The direction of the negative gradient is indicated by a
black arrow.
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mize ‖∇qL(q∗)‖). For this simple problem the results of both these choices are shown as Figures

2(b) and 2(c) respectively. The transformation in each of these cases can be determined from the

shuffling of G values.

5.3 Semicoordinate Transformations for Mixture Distributions

We have described how the Lagrangian measuring the distance of a product (mean field) distribution

to a Boltzmann distribution may be minimized in a distributed fashion. We now extend these results

to mixtures of product distributions, in order to represent multiple product distribution solutions at

once. As mentioned above, we can always do that by means of a semicoordinate transformation of

the underlying variables, allowing us to express that mixture distribution as the image of a product

distribution over a different space. In this section we demonstrate this explicitly.

Let x ∈ X indicate the new set of variables in a space of dimension dX , where z ∈ Z is the

original (pre-transformation) space over which G is defined. Then a product distribution over X

(where dX > n, the dimension of Z), and an appropriately chosen mapping ζζζ : X → Z induces a

mixture distribution over Z.

To see this consider an M component mixture distribution over n variables, which we write as:

q(z) =
∑M

m=1 q0(m)qm(z) with
∑M

m=1 q0(m) = 1 and qm(z) =
∏n

i=1 qm
i (zi). We can express this

q(z) as (the image of) a product distribution over a space X of dimension dX = 1+Mn. Intuitively,

the first dimension of X (indicated as x0 ∈ [1, M ]) labels the mixture, and the remaining Mn

dimensions (indicated as xm
i ∈ Zi) correspond to each of the original n dimensions for each of the

M mixtures.

More precisely, write out the X -space product distribution as qX (x) = q0(x0)
∏M

m=1 qm(xm)

with qm(xm) =
∏N

i=1 qm
i (xm

i ) for x = [x0,x1, · · · ,xM ] and xm = [xm
1 , · · · , xm

N ]. The density in X

and Z are related as usual by q(z) =
∑

x
qX (x)δ

(

z−ζ(x)
)

for our vector-valued mapping ζ : X → Z,

with the delta function of vectors being understood component-wise. If we label the components
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of ζ so that zi = ζi(x
0,x1, · · · ,xM ) , xx0

i we find

q(z) =
∑

x0

q0(x0)
∑

x
1,··· ,xM

∏

m

qm(xm)
∏

i

δ
(

zi − ζi(x
0,x1, · · · ,xM )

)

=
∑

x0

q0(x0)
∑

x
1,··· ,xM

∏

m

qm(xm)
∏

i

δ
(

zi − xx0

i

)

=
∑

x0

q0(x0)
∑

x
x0

qx0

(xx0

)
∏

i

δ
(

zi − xx0

i

)

=
∑

x0

q0(x0)qx0

(z)

Thus, under ζ the product distribution qX is mapped to the mixture of products q(z) =
∑

m q0(m)qm(z)

(after relabelling x0 to m), as desired.

The maxent Lagrangian of the X product distribution qX (x) is

L(qX ) =
∑

m

q0(m)Eqm(G) − T
[

S(q0) +
M
∑

m=1

S(qm)
]

.

This Lagrangian contains a term pushing us (as we search for the minimizer of that Lagrangian) to

maximize the entropy of the mixture weights. However, it provides no incentive for the distributions

qm to differ from each other.

If we wish to have the qm differ from one another, we can instead consider the maxent Lagrangian

over q(z). In this case

LZ(q) =
∑

z

G
(

z)q(z) − TS(q) =
∑

x

G
(

ζζζ(x)
)

qX (x) − TS(q)

=
∑

m

q0(m)Eqm(G) − TS

(

∑

m

q0(m)qm(z)

)

.

The entropy term differs crucially in these two maxent Lagrangians. To see this add and subtract

T
∑

m q0(m)S(qm) to the Z Lagrangian to find

LZ(q) =
∑

m

q0(m)L(qm) − TJ(q) (27)

where each L(qm) is a maxent Lagrangian as given by Eq. (1), and J(q) ≥ 0 is a modified version
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of the Jensen-Shannon (JS) distance,

J(q) = S
(

∑

m

q0(m)qm
)

−
∑

m

q0(m)S(qm) = −
∑

m

∑

z

q0(m)qm(z) ln
q(z)

qm(z)
.

Conventional Jensen Shannon distance is defined to compare two distributions to each other, and

gives those distributions equal weight (Lin 1991). In contrast, the generalized JS distance J(q)

concerns multiple distributions, and weights them nonuniformly, according to q0(m).

J(q) is maximized when the qm are all different from each other. Thus its inclusion in our

Lagrangian pushes us to have the mixing components {qm(x)|m = 1, . . . , M} be far apart (in X )

from one another. In this, we can view Eq. (27) as a novel derivation of (a generalized version of)

Jensen Shannon distance. Unfortunately, it also couples all of the variables (because of the sum

inside the logarithm), preventing a highly distributed solution.

To address this, in this paper we replace J(q) in LZ(q) with another function which lower-

bounds J(q) but which requires less communication between agents. It is this modified Lagrangian

that we will minimize.

5.4 A Variational Lagrangian

Following (Jaakkola & Jordan 1998), we introduce M variational functions w(z|m) and lower-bound

the true JS distance with

J(q) = −
∑

m

∑

z

q0(m)qm(z) ln

[

1

w(z|m)
q0(m)

w(z|m)q(z)

q0(m)qm(z)

]

=
∑

m

∑

z

q0(m)qm(z) lnw(z|m)) −
∑

m

q0(m) ln q0(m)

−
∑

m

∑

z

q0(m)qm(z) ln
w(z|m)q(z)

q0(m)qm(z)
.
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Now replace M of the − ln terms with the lower bound − ln z ≥ −νz + ln ν + 1 obtained from the

Legendre dual of the logarithm to find

J(q) ≥ J(q, w, ν) ,
∑

m

∑

z

q0(m)qm(z) lnw(z|m) −
∑

m

q0(m) ln q0(m)

−
∑

m

νm

∑

z

w(z|m)q(z) +
∑

m

q0(m) ln νm + 1.

Optimization over w and ν maximizes this lower bound. To further aid in distributing the algorithm

we restrict the class of variational w(z|m) to products: w(z|m) =
∏

i wi(zi|m). For this choice

J(q, w, ν) ,
∑

m

q0(m)

{

Bm,m −
∑

m̃

Am,m̃νm̃ + ln νm

}

+ S(q0) + 1 (28)

where Am̃,m
i ,

∑

zi
qm̃
i (zi)wi(zi|m), Am̃,m ,

∏d
i=1 Am̃,m

i , Bm,m
i ,

∑

zi
qm
i (zi) lnwi(zi|m), and

Bm,m ,
∑d

i=1 Bm,m
i .16 At any temperature T the variational Lagrangian which must be mini-

mized with respect to q, w and ν (subject to appropriate positivity and normalization constraints)

is then

LZ(q, w, ν) =
∑

m

q0(m)L(qm) − TJ(q, w, ν) (29)

with J(q, w, ν) given by Eq. (28).

6 Minimizing the Mixture Distribution Lagrangian

Equating the gradients with respect to w and ν to zero gives

1

νm

=
1

q0(m)

∑

m̃

q0(m̃)Am̃,m. (30)

wi(zi|m) ∝
q0(m)qm

i (zi)

νm

[

∑

m̃

q0(m̃)qm̃
i (zi)

Am̃,m

Am̃,m
i

]−1

. (31)

The dependence of LZ on q0(m) is particularly simple: LZ(q, w, ν) ≈
∑

m q0(m)E(m)−T
(

S(q0)+1
)

up to q0-independent terms and where

E(m) , Eqm(G) − T

(

S[qm] + Bm,m −
∑

m̃

Am,m̃νm̃ + ln νm

)

,
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Thus, the mixture weights are Boltzmann distributed with energy function E(m):

q0(m) =
exp
(

−E(m)/T
)

∑

m̃ exp
(

−E(m̃)/T
) . (32)

The determination of qm
i (zi) is similar. The relevant terms in LZ involving qm

i (zi) are LZ ≈

q0(m)
∑

zi
Em(zi)q

m
i (zi) − TS(qm

i ) where

Em(zi) = Eqm
−i

(G|zi) − T

(

lnwi(zi|m) −
∑

m̃

Am,m̃

Am,m̃
i

νm̃wi(zi|m̃)

)

.

As before the conditional expectation Eqm
−i

(G|zi) is
∑

z−i
G(zi, z−i)q

m
−i(z−i). The mixture probabil-

ities are thus determined as

qm
i (zi) =

exp
(

−Em(zi)/T
)

∑

zi
exp
(

−Em(zi)/T
) . (33)

6.1 Agent Communication

These results require minimal communication between agents. An agent, call this the 0-agent, is

assigned to manage the determination of q0(m), and (i, m)-agents manage the determination of

qm
i (zi). The M (i, m)-agents for a fixed i communicate their wi(zi|m) to determine Am,m̃

i . These

results along with the Bm,m
i from each (i, m) agent are then forwarded to the 0-agent who forms

Am,m̃ and Bm,m broadcasts this back to all (i, m)-agents. With these quantities and the local

estimates for Eqm
−i

(G|zi), all qm
i can be updated independently.

7 Experiments

In this section we demonstrate our methods on some simple problems. To keep this already lengthy

paper from being too large, this section is meant to be illustrative only. The reader is directed to

(Bieniawski & Wolpert 2004a, Bieniawski et al. 2004, Bieniawski & Wolpert 2004b, Lee & Wolpert

2004, Wolpert & Lee 2004, Macready & Wolpert 2004a) for many other related experiments.

As our first example we test the probability collective method on two different problems: a

k-sat constraint satisfaction problem having multiple feasible solutions, and optimization of an

unconstrained optimization of an NK function.
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Figure 3: (a) Evolution of Lagrangian value (solid line), expected constraint violation (dotted line),
and constraint violations of most likely configuration (dashed line). (b) P (G) after minimizing the
Lagrangian for the first 3 multiplier settings. At termination P (G) = δ(G).

7.1 k-sat

The k-sat problem is perhaps the best studied CSP (Mezard, Parisi & Zecchina 2002). The goal

is to assign N binary variables zi values so that C clauses are satisfied. The ath clause involves

k variables labelled by va,j ∈ [1, N ] (for j ∈ [1, k]), and k binary values associated with each a

and labelled by σa,j . The ath clause is satisfied iff
∨k

j=1[zva,j
= σa,j ] is true so we define the ath

constraint as

ca(z) =















0 if
∨k

j=1[zva,j
= σa,j ]

1 otherwise

.

As the ath clause is violated only when all zva,j
= σa,j (with σ , not σ), the Lagrangian over

product distributions can be written as L(q) = λλλ⊤c(q) − TS(q) where c(q) is the C-vector of

expected constraint violations whose ath component is ca(q) ,
∑

z
ca(z)q(z) =

∏k
j=1 qva,j

(σa,j),

and λλλ is the C vector of Lagrange multipliers. The only communication required to evaluate G

and its conditional expectations is between agents appearing in the same clause. Typically, this

communication network is sparse; for the N = 100, k = 3, C = 430 variable problem we consider

each agent interacts with only 6 other agents on average.

We first present results for a single product distribution. For any fixed setting of the Lagrange

multipliers, the Lagrangian is minimized by iterating Eq. (9). Had the minimization been done by
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Figure 4: Each constraint’s Lagrange multiplier versus the iterations when they change.

the Brouwer method, any random subset of variables, no two of which appear in the same clause,

could be updated simultaneously while still ensuring that the Lagrangian would decrease at each

iteration.

The minimization is terminated at a local minimum q∗. If all constraints are satisfied at q∗ we

return the solution z∗ = arg max
z
q∗(z) otherwise the Lagrange multipliers are updated according

to Eq. (10). In the present context, this updating rule offers a number of benefits. Firstly,

those constraints which are violated most strongly have their penalty increased the most, and

consequently, the agents involved in those constraints are most likely to alter their state. Secondly,

the Lagrange multipliers contain a history of the constraint violations (since we keep adding to λλλ)

so that when the agents coordinate on their next move they are unlikely to return a previously

violated state. This mimics the approach used in taboo search where revisiting of configurations

is explicitly prevented, and aids in an efficient exploration of the search space. Lastly, rescaling

the Lagrangian after each update of the multipliers by 111⊤λλλ =
∑

a λa gives L(q) = λ̂λλ⊤c(q) − T̂ S(q)

where λ̂λλ = λλλ/1⊤λλλ and T̂ = T/1⊤λλλ. Since
∑

a λ̂a = 1 the first term reweights clauses according

to their expected violation, while the temperature T̂ cools in an automated way as the Lagrange

multipliers increase. Cooling is most rapid when the expected constraint violation is large and

slows as the optimum is approached. The parameters αt
λ thus govern the overall rate of cooling.

We used the fixed value αt
λ = 0.5.

Figure 3 presents results for a 100 variable k = 3 problem using a single mixture. The problem
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is satisfiable formula uf100-01.cnf from SATLIB (www.satlib.org). It was generated with the

ratio of clauses to variables being near the phase transition, and consequently has few solutions.

Fig. 3(a) shows the variation of the Lagrangian, the expected number of constraint violations, and

the number of constraints violated in the most probable state zmp , arg max
z
q(z) as a function of

the number of iterations. The starting state is the maximum entropy configuration, and the starting

temperature is T = 1.5 · 10−3. The iterations at which the Lagrange multipliers are updated are

indicated by vertical dashed lines which are clearly visible as discontinuities in the Lagrangian

values. To show the stochastic underpinnings of the algorithm we plot in Fig. 3(b) the probability

density of the number of constraint violations obtained as P (G) =
∑

z
q(z)δ

(

G −
∑

a ca(z)
)

.17

Figure 4 shows the evolution of the renormalized Langrange multipliers λ̂λλ. At the first iteration the

multiplier for all clauses are equal. As the algorithm progresses weight is shifted amongst difficult

to satisfy clauses.

Results on a larger problem with multiple mixtures are shown in Fig. 5(a). This is the 250

variable/1065 clause problem uf250-01.cnf from SATLIB with the first 50 clauses removed so that

the problem has multiple solutions. The optimization was performed by selecting a random subset

of variables, no two of which appear in the same clause at each iteration, and updating according

to Eqs. (30), (31), (32), and (33). After convergence the Lagrange multipliers are updated. The

initial temperature is 10−1. We plot the number of constraints violated in the most probable

state of each mixture as a function of the number of updates. as well as the expected number of

violated constraints. After 8000 steps three distinct solutions have been found along with a fourth

configuration which violates a single constraint.

7.2 Minimization of NK Functions

The NK model defines a family of tunably difficult optimization problems (Kauffman & Levin

1987). The objective of N binary variables is defined as the average of N contributions local

to each variable zi and involving 0 ≥ K ≥ N − 1 other randomly chosen variables z1
i · · · z

K
i :

G(z) = N−1
∑N

i=1 Ei(zi; z
1
i , · · · zK

i ). For each of the 2K+1 local configurations Ei is assigned a

value drawn uniformly from 0 to 1. K controls the number of local minima; under Hamming

neighborhoods K = 0 optimization landscapes have a single global optimum and K = N − 1

landscapes have on average 2N/(N + 1) local minima. Further properties of NK landscapes may
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Figure 5: (a) The solid curves show the number of unsatisfied clauses in the most probable config-
uration zmp of each of the 4 mixtures vs iterations. The topmost solid black line plots the expected
number of violations, and the dashed black line shows the approximation to the JS distance. (b)
The solid curves show the evolution of the G value of the best zmp configurations for each of 5 mix-
tures versus number of iterations. The dashed black line shows the corresponding approximation
to the JS distance.

be found in (Durrett & Limic 2001). Fig. 5(b) plots the energy of a 5 mixture model for a multi-

modal N = 300 K = 2 function. The K−1 spins other than i upon which Ei depends were selected

at random. At termination of the PC algorithm (at a small but non-zero temperature), five distinct

configurations are obtained with the nearest pair of solutions having Hamming distance 12. Note

that unlike the k sat problem which has multiple configurations all having the same global minimal

energy, the JS distance (the dashed curve) of Fig. 5(b) drops to zero as the temperature decreases.

This is because at exactly zero temperature there is no term forcing different solutions, and the

Lagrangian is minimized by having all mixtures converge to delta functions at the lowest objective

configuration.

8 Relation of PC to other work

There has been much work from many fields related to PC. The maxent Lagrangian has been used

in statistical physics for over a century under the rubric of “free energy”. Its derivation in terms of

information theoretic statistical inference was by Jaynes (Jaynes 1957). The maxent Lagrangian has

also appeared occasionally in game theory as a heuristic, without a statistical inference justification
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(be it information-theoretic or otherwise) (Fudenberg & Levine 1998, Shamma & Arslan 2004).18

In none of this earlier work is there an appreciation for its relationship with the related work in

other fields.

In the context of distributed control/optimization, the distinguishing feature of PC is that it

does not view the variable x as the fundamental object, but rather the distribution across it, q.

Samples of that distribution are not the direct object of interest, and in fact are only used if

necessary to estimate functionals of q. The fundamental objective function is stated in terms of q.

As explicated in the next subsection, the associated optimization algorithms are related to some

work in several fields. Heretofore those fields have been unaware of each other, and of the breadth

of their relation to information theory and game theory.

Finally, we note that the maxent or qp Lagrangian L(q) = Eq(G) − TS(q) can be viewed as

a barrier-function (interior point) method with objective Eq(G). An entropic barrier function is

used to enforce the constraints qi(xi) ≥ 0 ∀i and xi, with the constraint that all qi sum to 1 being

implicit.

8.1 Various schemes for updating q

We have seen that the qp Lagrangian is minimized by the product distribution q given by

qi(xi) ∝ exp
(

−Eq−i
(G|xi)/T

)

. (34)

Direct application of these equations that minimize the Lagrangian form the basis of the Brouwer

update rules. Alternatively, steepest descent of the maxent Lagrangian forms the basis of the

Nearest Newton algorithm. These update rules have analogues in conventional (non-PC) opti-

mization. For example, Nearest-Newton is based on Newton’s method, and Brouwer updating is

similar to block-relaxation. This is one of the advantages of embedding the original optimization

problem involving x in a problem involving distributions across x: it allows us to solve problems

over non-Euclidean (e.g., countable) spaces using the powerful methods already well-understood

for optimization over Euclidean spaces.

However there are other PC update rules that have no direct analogue in such well-understood

methods for Euclidean space optimization. Algorithms may be developed that minimize the pq
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Lagrangian D(pT ‖q) where pT (x) = exp
(

−G(x)/T
)

/Z(T ) with Z(T ) being the normalization of

the Boltzmann distribution. The pq Lagrangian is minimized by the the product of the marginals of

the Boltzmann distribution, i.e. qi(xi) =
∫

dx−i pT (x). Another example of update rules without

Euclidean analogues are the iterative focusing update rules described in (Wolpert 2004b). Iterative

focusing updates are intrinsically tied into the fact that we’re minimizing (the distribution setting)

an expectation value.

A subset of update rules arising from qp and pq Lagrangians are described in (Wolpert 2004b).

In all cases, the updates may be written as multiplicative updating of q. The following is a list of

the update ratios rq,i(xi) ≡ qt+1
i (xi)/qt

i(xi) of some of those rules. In all of these, FG is a probability

distribution over x that never increases between two x’s if G does (e.g., a Boltzmann distribution

in G(x)). In addition, const is a scalar that ensures the new distribution is properly normalized

and α is a stepsize.19

Gradient descent of qp distance to FG:

1 − α
{

Eqt(lnFG|xi) + ln(qt
i(xi))

qt
i(xi )

}

−
const

qt
i(xi)

(35)

Nearest Newton descent of qp distance to FG:

1 − α
{

Eqt(lnFG|xi) + ln(qt
i(xi))

}

− const (36)

Brouwer updating for qp distance to FG:

const ×
eEqt (ln FG|xi)

qt
i(xi)

(37)

Importance sampling minimization of pq distance to FG:

const × Eqt

(

FG

qt
|xi

)

(38)
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Iterative focusing of q̃ with focusing function FG using qp distance and gradient descent:

1 − α
{Eqt(lnFG|xi) + ln

qt
i(xi)

q̃i(xi)

qt(xi)

}

−
const

qt(xi)
(39)

Iterative focusing of q̃ with focusing function FG using qp distance and Nearest Newton:

1 − α
{

Eqt(lnFG|xi) + ln
qt
i(xi)

q̃i(xi)

}

− const (40)

Iterative focusing of q̃ with focusing function FG using qp distance and Brouwer updating:

const × eEqt (ln FG|xi) ×
q̃(xi)

qt
i(xi)

(41)

Iterative focusing of q̃ with focusing function FG using pq distance:

const × Eq̃(FG|xi) ×
q̃(xi)

qt
i(xi)

(42)

Note that some of these update ratios are themselves proper probability distributions, e.g., the

Nearest Newton update ratio.

This list highlights the ability to go beyond conventional Euclidean optimization update rules,

and is an advantage of embedding the original optimization problem in a problem over a space of

probability distributions. Another advantage is the fact that the distribution itself provides much

useful information (e.g., sensitivity information). Yet another advantage is the natural use of Monte

Carlo techniques that arise with the embedding, and allow the optimization to be used for adaptive

control.

There are also overlaps of PC with evolutionary approaches to optimization (e.g., genetic algo-

rithms). Many techniques in the evolutionary computation community use Boltzmann distributions

in ad hoc ways to update a “population” of x’s, e.g., “truncation selection” and “Boltzmann selec-

tion” (G.Ficici, Melnik, & Pollack 2000). These rules are not formally derived, and do not directly

concern themselves with distributions q. However some of them are similar to the PC update

rules, in particular iterative focusing rules, only applied to sets of Monte Carlo sample points (the

43



population) rather than to q. There are other techniques which also use Boltzmann distributions

and samples, although without a multi-member population, e.g., simulated annealing.

These early techniques do not consider the underlying distribution that gets sampled to produce

the population. Such consideration was introduced in PBIL (Baluja 2002), MIMIC (Bonet, Jr. &

Viola 1996) and other EDA algorithms (Larraaga & Lozano 2001), followed shortly by the powerful

CE method (Rubinstein & Kroese 2004).

However while considering distributions, none of this early work casts the objective as a min-

imization of a functional of that distribution. Accordingly, all the power arising from minimizing

Euclidean vectors is absent in this work. There is none of the second order methods, difference

utilities, or data-ageing that appear to be crucial for very large problems. Nor does this earlier

work exploit semicoordinate transformations (the topic of this paper), oracle-based methods (Lee

& Wolpert 2004), etc. Despite this, the results in (Rubinstein & Kroese 2004) in particular are

compelling. (Note that the CE method, as applied, is identical to Eq. (42), although with a different

justification.)

There is other previous work on optimization that has directly considered the distribution q as

the object of interest. In particular deterministic annealing (Duda et al. 2000) is “bare-bones”

parallel Brouwer updating. This involves no data-aging (or any other scheme to avoid thrashing of

the agents), difference utilities, etc..20

Most tantalizingly, probability matching (Sabes & Jordan 1996) uses Monte Carlo sampling to

optimize a functional of q. However this work was in the context of a single agent, did not exploit

techniques like data-ageing, and was not pursued.

Other work has both viewed q as the fundamental object of interest and used techniques like

data-aging and difference utilities (Wolpert, Tumer & Frank 1999, Wolpert et al. 2003, Wolpert

2003c). However this work was not based on information-theoretic considerations and had no

explicit objective function for q. It was the introduction of such considerations that resulted in PC.

Finally, shortly after the introduction of PC a variant of its Monte Carlo version of parallel

Brouwer updating has been introduced, called the MCE method (Rubenstein 2005). In this variant

the annealing of the Lagrangian doesn’t involve changing the temperature β, but instead changing

the value of a constraint specifying Eq(G). Accordingly, rather than jump directly to the (β-

specified) solution given above, one has to solve a set of coupled nonlinear equations relating all

44



the qi. (Another distinguishing feature is no data-ageing, difference utilities or the like are used in

the MCE method.) The MCE method has been justified with the KL argument reviewed above

rather than with “ratchet”-based maximum entropy arguments. This has redrawn attention to the

role of the argument-ordering of the KL distance, and how it relates Brouwer updating and the CE

method.

9 Conclusion

A distributed constrained optimization framework based on probability collectives has been pre-

sented. Motivation for the framework was drawn from an extension of full-rationality game theory

to bounded rational agents. An algorithm that is capable of obtaining one or more solutions simul-

taneously was developed and demonstrated on two problems. The results show a promising, highly

distributed, off-the-shelf approach to constrained optimization.

There are many avenues for future exploration. Alternatives to the Lagrange multiplier method

used here can be developed for constraint satisfaction problems. By viewing the constraints as

separate objectives, a Pareto-like optimization procedure may be developed whereby a gradient

direction is chosen which is constrained so that no constraints are worsened. This idea is motivated

by the highly successful WalkSAT (Selman, Kautz & Cohen 1996) algorithm for k-sat in which

spins are flipped only if no previously satisfied clause becomes unsatisfied as a result of the change.

Probability collectives also offer promise in devising new methods for escaping local minima.

Unlike traditional optimization methods where monotonic transformations of the objective leave lo-

cal minima unchanged, such transformations will alter the local minima structure of the Lagrangian.

This observation, and alternative Lagrangians (see (Rubinstein 2001) for a related approach using

a different minimization criterion) offer new approaches for improved optimization.
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Notes

1|S| denotes the number of elements in the set S.

2In this paper vectors are indicated in bold font and scalars are in regular font.
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3Despite its popularity, the KL distance D(q‖p) between two probability distributions q and p is not a proper

metric. It is not even symmetric between q and p. However it is non-negative, and equals zero only when q = p.

4Here and throughout, we fix the convention that it is desirable to minimize objective functions, not to maximize

them.

5We adopt the notation that q−i indicates the distribution q with variable i marginalized out, i.e., the productQ
j 6=i

qj . Analogously, x−i , [x1, · · · , xi−1, xi+1, · · · , xn]

6Properly speaking one should find the global minimizer q. Here we content ourselves with finding local minima.

7N.b., we do not project onto Q but rather add a vector to get back to it. See (Wolpert & Bieniawski 2004b).

8For such a distribution we relax the requirement of being a product or having any other particular form; we only

require that all 0 ≤ π(x) ≤ 1 and
P

x
π(x) = 1.

9Quadratic loss can be roughly related to the assumption that the Lagrangian is locally well-approximated by a

paraboloid. We want to estimate f using an estimator f̂(n) which is a function of prior information n. If we penalize

errors quadratically (i.e. the error incurred when the estimate is f̂ and the true value is f is Err(f , f̂) = ‖f̂ − f‖2), then

the expected error conditioned on n is Ef |n(Err) =
R

df P (f |n)‖f̂ − f‖2 = ‖f̂‖2 − 2f̂⊤Ef |n(f)+Ef |n(‖f‖2). Minimizing

this with respect to the estimator f̂ gives the optimal quadratic loss estimator f̂(n) = Ef |n(f) Uncertainty in f arises

due to uncertainty in q−i, and hence we integrate over the unknown q.

10The bias-variance decomposition decomposes the error of an estimator into two contributions. Again let f be the

true quantity and let f̂(n) be an estimator of f formed from data n. We are interested in the error Err(f̂ , f) = (f̂−f)2

when averaged over different data sets n so we consider Ef,n(Err) =
R

dndf P (n, f)(f̂−f)2. By adding and subtracting

Ef (f)−En(f̂) we have Ef,n(Err) =
R

dndf P (n, f)
�
{f̂ −En(f̂)}+ {Ef (f)− f}+ {En(f̂)−Ef (f)}

�2
. The cross term

vanish when integrating, and we are left with Ef,n(Err) = En

�
[f̂ − En(f̂)]2

�
+ Ef

�
[f − Ef (f)]2

�
+
�
Ef (f) − En(f̂)

�2
.

The first term is the variance of the estimator across different data sets. The second term is the noise inherent in the

quantity being estimated which is independent of the estimator, and which we will therefore ignore. The final term

is the square of the bias of the estimator.

11Another alternative is to use data-ageing so that data from preceding Monte Carlo blocks can be re-used. Yet

another alternative is to force a sample for each xi value that has no samples at the end of the block, x′
i. This is

done by drawing a random sample of the distribution δ(xi − x′
i)q−i(x−i).

12To Monte Carlo estimate a conditional expected utility for agent i it is crucial that x−i be generated by sampling

the associated distribution q−i. However the value xi can be set in any fashion whatsoever.

13Just like AU, less sophisticated versions of WLU were previously explored under the same name, with examples

again arising in (Wolpert & Tumer 2001, Wolpert, Wheeler & Tumer 2000) and references therein.

14To see this, say we add a function Di(x−i) to G(x) both places G occurs in the Nearest Newton update rule.

Then since qi(xi) is evaluated exactly, the data average of the empirical estimates of those two terms involving Di

both give the expectation value αtqt
i(xi)Eqt

−i

(Di) exactly. Accordingly, those two terms cancel.

15The Jacobian factor is irrelevant as ζ is a permutation.

16Note that if wi(zi|m) = 1/|Zi| is uniform across zi then Am̃,m
i = 1/|Zi| and Bm,m

i = − ln |Zi|. Maximizing over
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νm we find that J(q, w = 1/|Z|, ν = ν∗) = 0. Thus, maximizing with respect to w increases the JS distance from 0.

17In determining the density 104 samples were drawn from q(z) with Gaussians centered at each value of G(z,1)

and with the width of all Gaussians determined by cross validation of the log likelihood. The fact that there is

non-zero probability of obtaining non-integral numbers of constraint violations is an artifact of the finite width of the

Gaussians.

18However an attempt at a first-principles derivation can be found in (Meginniss 1976). While fascinating, this

attempt is flawed (D. Luce, private communication).

19As a practical matter, both Nearest Newton and gradient-based updating have to be modified in a particular

step if their step size is large enough so that they would otherwise take one off the unit simplex. This changes the

update ratio for that step. See (Wolpert & Bieniawski 2004b).

20Indeed, as conventionally cast, deterministic annealing assumes the conditional G can be evaluated in closed

form, and therefore has no concern for Monte Carlo sampling issues.
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